The protein complex of tuberous sclerosis complex (TSC)1 and TSC2 tumor suppressors is a key negative regulator of mammalian target of rapamycin (mTOR). Hyperactive mTOR signaling due to the loss-of-function of mutations in either TSC1 or TSC2 gene causes TSC, an autosomal dominant disorder featured with benign tumors in multiple organs. As the ubiquitous second messenger calcium (Ca(2+)) regulates various cellular processes involved in tumorigenesis, we explored the potential role of mTOR in modulation of cellular Ca(2+) homeostasis, and in turn the effect of Ca(2+) signaling in TSC-related tumor development. We found that loss of Tsc2 potentiated store-operated Ca(2+) entry (SOCE) in an mTOR complex 1 (mTORC1)-dependent way. The endoplasmic reticulum Ca(2+) sensor, stromal interaction molecule 1 (STIM1), was upregulated in Tsc2-deficient cells, and was suppressed by mTORC1 inhibitor rapamycin. In addition, SOCE repressed AKT1 phosphorylation. Blocking SOCE either by depleting STIM1 or ectopically expressing dominant-negative Orai1 accelerated TSC-related tumor development, likely because of restored AKT1 activity and enhanced tumor angiogenesis. Our data, therefore, suggest that mTORC1 enhancement of store-operated Ca(2+) signaling hinders TSC-related tumor growth through suppression of AKT1 signaling. The augmented SOCE by hyperactive mTORC1-STIM1 cascade may contribute to the benign nature of TSC-related tumors. Application of SOCE agonists could thus be a contraindication for TSC patients. In contrast, SOCE agonists should attenuate mTOR inhibitors-mediated AKT reactivation and consequently potentiate their efficacy in the treatment of the patients with TSC.