Objective: This study aimed to evaluate the antidiarrheal efficacy and pharmacological properties of ethyl 2-(4-oxo-3-o-tolyl-3,4-dihydroquinazolin-2-ylthio)acetate (DQA) as an inhibitor of cystic fibrosis transmembrane conductance regulator protein (CFTR) both in vitro and in vivo.
Materials and methods: The effects of DQA on CFTR function and cell viability were investigated in Fisher rat thyroid (FRT) cells expressing human CFTR and human intestinal epithelial T84 cells by short-circuit current measurements and MTT assays, respectively. In vivo antidiarrheal efficacy of DQA was evaluated in a closed loop model of cholera in mice.
Results: In permeabilized FRT cells, apical chloride current induced by CFTR agonists (10 μM forskolin, 100 μM CPT-cAMP, and 20 μM apigenin) was inhibited by DQA with IC(50) ~ 20 μM and complete inhibition at 200 μM. The inhibitory effect was reversible and not associated with cytotoxicity to FRT cells (5-500 μM DQA for 24 h). Likewise, DQA effectively inhibited both forskolin and cholera toxin-induced transepithelial chloride secretion in T84 cells. In mice, intraluminal injection of 100 μM DQA reduced cholera toxin (1 μg/closed loop)-induced intestinal fluid secretion by 85% without affecting intestinal fluid absorption.
Conclusions: DQA represents a new class of small molecule CFTR inhibitor with potential application in treatment of cholera.
Keywords: CFTR; CFTR inhibitor; chloride secretion; cholera; secretory diarrhea.