Objective: Convergent research demonstrates disrupted attention and heightened threat sensitivity in posttraumatic stress disorder (PTSD). This might be linked to aberrations in large-scale networks subserving the detection of salient stimuli (i.e., the salience network [SN]) and stimulus-independent, internally focused thought (i.e., the default mode network [DMN]).
Methods: Resting-state brain activity was measured in returning veterans with and without PTSD (n = 15 in each group) and in healthy community controls (n = 15). Correlation coefficients were calculated between the time course of seed regions in key SN and DMN regions and all other voxels of the brain.
Results: Compared with control groups, participants with PTSD showed reduced functional connectivity within the DMN (between DMN seeds and other DMN regions) including the rostral anterior cingulate cortex/ventromedial prefrontal cortex (z = 3.31; p = .005, corrected) and increased connectivity within the SN (between insula seeds and other SN regions) including the amygdala (z = 3.03; p = .01, corrected). Participants with PTSD also demonstrated increased cross-network connectivity. DMN seeds exhibited elevated connectivity with SN regions including the insula (z = 3.06; p = .03, corrected), and SN seeds exhibited elevated connectivity with DMN regions including the hippocampus (z = 3.10; p = .048, corrected).
Conclusions: During resting-state scanning, participants with PTSD showed reduced coupling within the DMN, greater coupling within the SN, and increased coupling between the DMN and the SN. Our findings suggest a relative dominance of threat-sensitive circuitry in PTSD, even in task-free conditions. Disequilibrium between large-scale networks subserving salience detection versus internally focused thought may be associated with PTSD pathophysiology.