Reported in this study is an animal model system for evaluating targeted ultrasound (US) contrast agents binding using adenoviral (Ad) vectors to modulate cellular receptor expression. An Ad vector encoding an extracellular hemagglutinin (HA) epitope tag and a green fluorescent protein (GFP) reporter was used to regulate receptor expression. A low and high receptor density (in breast cancer tumor bearing mice) was achieved by varying the Ad dose with a low plaque forming unit (PFU) on day 1 and high PFU on day 2 of experimentation. Targeted US contrast agents, or microbubbles (MB), were created by conjugating either biotinylated anti-HA or IgG isotype control antibodies to the MB surface with biotin-streptavidin linkage. Targeted and control MBs were administered on both days of experimentation and contrast-enhanced US (CEUS) was performed on each mouse using MB flash destruction technique. Signal intensities from MBs retained within tumor vasculature were analyzed through a custom Matlab program. Results showed intratumoral enhancement attributable to targeted MB accumulation was significantly increased from the low Ad vector dosing and the high Ad vector dosing (p = 0.001). Control MBs showed no significant differences between day 1 and day 2 imaging (p = 0.96). Additionally, targeted MBs showed a 10.5-fold increase in intratumoral image intensity on day 1 and an 18.8-fold increase in image intensity on day 2 compared with their control MB counterparts.
Copyright © 2013. Published by Elsevier Inc.