We have established long-term cultures of postnatal retinal cells on arrays of gallium phosphide nanowires of different geometries. Rod and cone photoreceptors, ganglion cells and bipolar cells survived on the substrates for at least 18 days in vitro. Glial cells were also observed, but these did not overgrow the neuronal population. On nanowires, neurons extended numerous long and branched neurites that expressed the synaptic vesicle marker synaptophysin. The longest nanowires (4 μm long) allowed a greater attachment and neurite elongation and our analysis suggests that the length of the nanowire per se and/or the adsorption of biomolecules on the nanowires may have been important factors regulating the observed cell behavior. The study thus shows that CNS neurons are amenable to gallium phosphide nanowires, probably as they create conditions that more closely resemble those encountered in the in vivo environment. These findings suggest that gallium phosphide nanowires may be considered as a material of interest when improving existing or designing the next generation of implantable devices. The features of gallium phosphide nanowires can be precisely controlled, making them suitable for this purpose.
Copyright © 2012 Elsevier Ltd. All rights reserved.