Benzofuroxane derivatives as multi-effective agents for the treatment of cardiovascular diabetic complications. Synthesis, functional evaluation, and molecular modeling studies

J Med Chem. 2012 Dec 13;55(23):10523-31. doi: 10.1021/jm301124s. Epub 2012 Nov 20.

Abstract

Diabetes mellitus is the major risk factor for cardiovascular disorders. Aldose reductase, the rate-limiting enzyme of the polyol pathway, plays a key role in the pathogenesis of diabetic complications. Accordingly, inhibition of this enzyme is emerging as a major therapeutic strategy for the treatment of hyperglycemia-induced cardiovascular pathologies. In this study, we describe a series of 5(6)-substituted benzofuroxane derivatives, 5a-k,m, synthesized as aldose reductase inhibitors. Besides inhibiting efficiently the target enzyme, 5a-k,m showed additional NO donor and antioxidant properties, thus emerging as novel multi-effective compounds. The benzyloxy derivative 5a, the most promising of the whole series, showed a well-balanced, multifunctional profile consisting of submicromolar ALR2 inhibitory efficacy (IC50=0.99±0.02 μM), significant and spontaneous NO generation properties, and excellent hydroxyl radical scavenging activity. Computational studies of the novel compounds clarified the aldose reductase inhibitory profile observed, thus rationalizing structure-activity relationships of the whole series.

MeSH terms

  • Animals
  • Benzoxazoles / chemistry
  • Benzoxazoles / pharmacology
  • Benzoxazoles / therapeutic use*
  • Cardiovascular Diseases / complications
  • Cardiovascular Diseases / drug therapy*
  • Diabetes Complications / drug therapy*
  • Humans
  • Liver / drug effects
  • Liver / metabolism
  • Models, Molecular
  • Molecular Docking Simulation
  • Rats

Substances

  • Benzoxazoles
  • benzofuroxan