Background: Serum proteins carry out several functions in the circulation, including transfer, immunological functions, messenger functions, coagulation, and regulation of homeostasis. To investigate changes in serum proteins that occur during development, the serum proteomes of embryonic 15.5 (E15.5) fetuses and newborn rats were compared using LC-MS/MS.
Results: A total of 958 proteins were identified in the serum of rats at both developmental stages. The serum proteome pattern of newborn rats was compared to E15.5 fetuses by relative quantitation. The expression patterns of hemoglobin subunits were different at the two stages, with most of the subunits having decreased expression in newborn rats compared to E15.5 fetuses. In addition, 8 of 12 apolipoproteins were significantly decreased and 10 of 11 identified complement molecules were increased, with 4 exhibiting a significant increase. Moreover, 11 of 14 of the significantly increased enzyme regulators were inhibitors. The serum proteome patterns of different littermates from both developmental stages were also compared. We found that the levels of many highly abundant serum proteins varied between littermates, and the variations were larger than the variations of the technical control.
Conclusions: The serum proteomes of newborn rats and E15.5 fetuses were compared. The expression patterns of hemoglobin subunits were different at the two developmental stages, with most of the subunits having decreased expression. The majority of apolipoproteins had significantly decreased expression, while almost all identified complement proteins had increased expression. The levels of several highly abundant serum proteins also varied among littermates at these two developmental stages. This is the first study using LC-MS/MS to investigate serum proteome development.