Among double perovskites, the interpretation of the magnetic, thermal and transport properties of Sr(2)YRuO(6) remains a challenge. Characterization using different techniques reveals a variety of features that are not understood, described as anomalous, and yields contradictory values for several relevant parameters. We solved this situation through detailed susceptibility, specific heat, thermal expansion and x-ray diffraction measurements, including a quantitative correlation of the parameters characterizing the so-called anomalies. The emergence of short-range magnetic correlations, surviving well above the long-range transition, naturally accounts for the observed unconventional behavior of this compound. High resolution x-ray powder diffraction and thermal expansion results conclusively show that the magnetic and thermal responses are driven by lattice changes, providing a comprehensive scenario in which the interplay between the spin and structural degrees of freedom plays a relevant role.