During aging the brain displays an increased proinflammatory status, which is associated with the pathogenesis of aging-related diseases such as Alzheimer's and Parkinson diseases. Matrix metalloproteinases (MMPs) facilitate the migration of inflammatory cells in tissues and modulate their inflammatory activity. In this study, we screened expression of MMPs in 3-, 10-, and 18-month-old mice and observed that cerebral MMP-12 expression was strongly upregulated during aging. We compared the neuroinflammation of 3-, 10-, and 18-month-old MMP-12-deficient versus wild type mice by counting microglia and measuring inflammatory gene transcripts in the brain and observed that MMP-12 deficiency reduced neuroinflammation during aging. In order to identify potential mechanisms, we analyzed the inflammatory activity of microglia directly isolated from adult mouse brains or cultured from newborn mice. We observed that MMP-12 deficiency increased the inflammatory activity of adult brain-derived microglia, but did not affect cultured microglia. We found greater numbers of CD11b/CD45(high) cells in the parenchyma of MMP-12 wild type than in the parenchyma of MMP-12-deficient mouse brains. Thus, our study suggested that the upregulated cerebral MMP-12 during aging enhances aging-associated neuroinflammation by facilitating recruitment of bone marrow-derived microglia into the brain.
Copyright © 2013 Elsevier Inc. All rights reserved.