Following N deprivation, microalgae accumulate triacylglycerols (TAGs). To gain mechanistic insights into this phenomenon, we identified mutants with reduced TAG content following N deprivation in the model alga Chlamydomonas reinhardtii. In one of the mutants, the disruption of a galactoglycerolipid lipase-encoding gene, designated PLASTID GALACTOGLYCEROLIPID DEGRADATION1 (PGD1), was responsible for the primary phenotype: reduced TAG content, altered TAG composition, and reduced galactoglycerolipid turnover. The recombinant PGD1 protein, which was purified from Escherichia coli extracts, hydrolyzed monogalactosyldiacylglycerol into its lyso-lipid derivative. In vivo pulse-chase labeling identified galactoglycerolipid pools as a major source of fatty acids esterified in TAGs following N deprivation. Moreover, the fatty acid flux from plastid lipids to TAG was decreased in the pgd1 mutant. Apparently, de novo-synthesized fatty acids in Chlamydomonas reinhardtii are, at least partially, first incorporated into plastid lipids before they enter TAG synthesis. As a secondary effect, the pgd1 mutant exhibited a loss of viability following N deprivation, which could be avoided by blocking photosynthetic electron transport. Thus, the pgd1 mutant provides evidence for an important biological function of TAG synthesis following N deprivation, namely, relieving a detrimental overreduction of the photosynthetic electron transport chain.