Effect of pullulan nanoparticle surface charges on HSA complexation and drug release behavior of HSA-bound nanoparticles

PLoS One. 2012;7(11):e49304. doi: 10.1371/journal.pone.0049304. Epub 2012 Nov 14.

Abstract

Nanoparticle (NP) compositions such as hydrophobicity and surface charge are vital to determine the presence and amount of human serum albumin (HSA) binding. The HSA binding influences drug release, biocompatibility, biodistribution, and intercellular trafficking of nanoparticles (NPs). Here, we prepared 2 kinds of nanomaterials to investigate HSA binding and evaluated drug release of HSA-bound NPs. Polysaccharides (pullulan) carboxyethylated to provide ionic derivatives were then conjugated to cholesterol groups to obtain cholesterol-modified carboxyethyl pullulan (CHCP). Cholesterol-modified pullulan (CHP) conjugate was synthesized with a similar degree of substitution of cholesterol moiety to CHCP. CHCP formed self-aggregated NPs in aqueous solution with a spherical structure and zeta potential of -19.9 ± 0.23 mV, in contrast to -1.21 ± 0.12 mV of CHP NPs. NPs could quench albumin fluorescence intensity with maximum emission intensity gradually decreasing up to a plateau at 9 to 12 h. Binding constants were 1.12 × 10(5) M(-1) and 0.70 × 10(5) M(-1) to CHP and CHCP, respectively, as determined by Stern-Volmer analysis. The complexation between HSA and NPs was a gradual process driven by hydrophobic force and inhibited by NP surface charge and shell-core structure. HSA conformation was altered by NPs with reduction of α-helical content, depending on interaction time and particle surface charges. These NPs could represent a sustained release carrier for mitoxantrone in vitro, and the bound HSA assisted in enhancing sustained drug release.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cholesterol / chemistry
  • Drug Delivery Systems*
  • Fluorescence
  • Glucans / chemistry
  • Glucans / metabolism*
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Magnetic Resonance Spectroscopy
  • Microscopy, Electron, Transmission
  • Mitoxantrone
  • Nanoparticles*
  • Serum Albumin / metabolism*
  • Spectrometry, Fluorescence
  • Spectroscopy, Fourier Transform Infrared
  • Surface Properties

Substances

  • Glucans
  • Serum Albumin
  • pullulan
  • Cholesterol
  • Mitoxantrone

Grants and funding

This work was supported by NSFC-Guangdong Joint Funds (No. U0932005), the National Natural Science Foundation of China (No. 81173048 and 81072633), the Research Fund for the Doctoral Program of Higher Education of China (No. 200805600003), and the Natural Science Foundation of Guangdong Province of China (No. 07008206). The funders had no role in study design,data collection and analysis, decision to publish, or preparation of the manuscript.