Halogen-bonding interactions with π systems: CCSD(T), MP2, and DFT calculations

Chemphyschem. 2012 Dec 21;13(18):4224-34. doi: 10.1002/cphc.201200605. Epub 2012 Nov 21.

Abstract

Halogen bonding is a noncovalent interaction between a halogen atom and a nucleophilic site. Interactions involving the π electrons of aromatic rings have received, up to now, little attention, despite the large number of systems in which they are present. We report binding energies of the interaction between either NCX or PhX (X = F, Cl, Br, I) and the aromatic benzene system as determined with the coupled cluster with perturbative triple excitations method [CCSD(T)] extrapolated at the complete basis set limit. Results are compared with those obtained by Møller-Plesset perturbation theory to second order (MP2) and density functional theory (DFT) calculations by using some of the most common functionals. Results show the important role of DFT in studying this interaction.