Protamine sulfate induced bladder injury protects from distention induced bladder pain

J Urol. 2013 Jan;189(1):343-51. doi: 10.1016/j.juro.2012.08.189. Epub 2012 Nov 20.

Abstract

Purpose: Bladder pain is a debilitating symptom of many urological conditions. There is no generally effective treatment. Abnormal urothelial turnover is common to multiple disease states but the specific components of urothelial injury and the resulting molecular signals that lead to bladder pain are unknown. We examined mouse models of bladder injury induced by uropathogenic Escherichia coli, protamine sulfate (Sigma®) and bacterial lipopolysaccharide to identify cellular and molecular correlates underlying pain sensitization in response to the stimuli.

Materials and methods: C57BL/6 female mice (Jackson Laboratory, Bar Harbor, Maine) were given intravesicular protamine sulfate, lipopolysaccharide or uropathogenic E. coli. The impact of each on nociception was determined by measuring the evoked visceromotor response to bladder distention 24 hours after inoculation. Levels of pyuria and tissue inflammation were examined by urinary cytology and tissue histology. Quantitative polymerase chain reaction and gene expression analysis were used to identify injury profiles associated with nociception.

Results: Protamine sulfate treatment was significantly analgesic upon bladder distention. Protamine treated bladders did not show pyuria or extensive tissue damage. Protamine injury was associated with a global decrease in the expression of inflammation associated genes. In contrast, uropathogenic E. coli injury significantly increased the nociceptive response to bladder distention. Lipopolysaccharide treatment did not affect nociception. Finally, injury induced expression of inflammation associated genes correlated with nociceptive responses.

Conclusions: Protamine treatment of the bladder is analgesic and tissue protective, and it suppresses the inflammatory cytokine expression normally associated with nociception. Also, the injury modalities that result in differential tissue response patterns provide an innovative method for identifying mediators of visceral pain.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Female
  • Mice
  • Mice, Inbred C57BL
  • Protamines / administration & dosage
  • Protamines / therapeutic use*
  • Urinary Bladder Diseases / chemically induced
  • Urinary Bladder*
  • Visceral Pain / prevention & control*

Substances

  • Protamines