CYP450 3A4 (CYP3A4), encoded by the CYP3A4 gene, is a major enzyme catalyzing the metabolism of both endogenous and exogenous agents that may play a role in the etiology of carcinogenesis. Several potentially functional polymorphisms of the CYP3A4 gene have been implicated in cancer risk, but individually published studies have shown inconclusive results. The aim of this Human Genome Epidemiology (HuGE) review and meta-analysis was to investigate the association between CYP3A4*1B (rs2740574 A > G) polymorphism and cancer risk. Eleven studies were included with a total of 3,810 cancer patients and 3,173 healthy controls. We found that the G allele and GG genotype of CYP3A4*1B polymorphism were associated with increased risk of cancers using the fixed effects model (allele model: odds ratio (OR) = 1.24, 95 %CI: 1.09-1.42, P = 0.001; recessive model: OR = 1.77, 95 %CI: 1.30-2.41, P < 0.001; homozygous model: OR = 1.72, 95 %CI: 1.19-2.47, P = 0.004). Subgroup analyses by cancer type showed that the G allele and G carrier (AG + GG) of CYP3A4*1B polymorphism had significant associations with increased risk of prostate cancer, but not with breast cancer, leukemia, or other cancers. With further subgroup analysis based on different ethnicities, the results indicated that the GG genotype of CYP3A4*1B polymorphism might increase the risk of cancer among African populations. However, similar associations were not observed among Caucasian and Asian populations. Results from the current meta-analysis indicate that the G allele and GG genotype of CYP3A4*1B polymorphism might be associated with increased cancer risk, especially for prostate cancer among African populations.