Functional relevance of the newly evolved sperm dynein intermediate chain multigene family in Drosophila melanogaster males

Commun Integr Biol. 2012 Sep 1;5(5):462-5. doi: 10.4161/cib.21136.

Abstract

In many animal species, traits associated with male fitness evolve rapidly. Intersexual conflict and male-male competition have been suggested to drive this rapid evolution. These fast evolutionary dynamics result in elevated rates of amino acid replacement and modification of gene expression attributes. Gene acquisition is another mechanism that might contribute to fitness differences among males. However, empirical evidence of fitness effects associated with newly evolved genes is scarce. The Sdic multigene family originated within the last 5.4 myr in the lineage that leads to D. melanogaster and encodes a sperm dynein intermediate chain presumably involved in sperm motility. The silencing of the Sdic multigene family, followed by the screening of relevant phenotypes, supports the role of the Sdic multigene family in sperm competition. The case of the Sdic multigene family illustrates the flexibility of genetic networks in incorporating lineage-specific gene novelties that can trigger an evolutionary arms race between males.

Keywords: Drosophila; chromosome engineering; fitness variation; genotype-phenotype map; male fertility; newly evolved genes; sperm competition.