The tungsten sulfide/multi-wall carbon nanotube (WS(2)/MWCNT) hybrid was prepared in the presence of glucose by the hydrothermal route. The hybrid materials were used as counter electrode in the dye-sensitized solar cell (DSSC). The results of cyclic voltammetry measurement and electrochemical impedance spectroscopy indicated that the glucose aided prepared (G-A) WS(2)/MWCNT electrode had low charge-transfer resistance (R(ct)) and high electrocatalytic activity for triiodide reduction. The excellent electrochemical properties for (G-A) WS(2)/MWCNT electrode is due to the synergistic effects of WS(2) and MWCNTs, as well as amorphous carbon introduced by glucose. The DSSC based on the G-A WS(2)/MWCNT counter electrode achieved a high power conversion efficiency of 7.36%, which is comparable with the performance of the DSSC using Pt counter electrode (7.54%).