Purpose: To compare the repeatability of γ-aminobutyric acid (GABA) measurements using J-difference editing, before and after spectral realignment-a technique which has previously been demonstrated to improve the quality of J-difference GABA spectra.
Materials and methods: We performed in vivo measurements in three brain regions (occipital, sensorimotor, and dorsolateral prefrontal cortex [DLPFC]), and analyzed these using alternative alignment approaches to evaluate the impact of alignment on repeatability: "Independent alignment" (aligning each subspectrum independently) and "Pairwise alignment" (aligning each on and off subspectrum as a pair) were compared.
Results: Pairwise alignment improved the group mean coefficient of variation in all regions; 0.4% in occipital, 1.1% in sensorimotor, and 1.1% in DLPFC. Independent alignment resulted in subtraction artifacts in the majority of cases, and increased the coefficient of variation in the DLPFC by 9.4%. Simulations demonstrate that the GABA quantification error in datasets with high B0 drift, is 4.5% without alignment, but <1% with optimal alignment.
Conclusion: Pairwise alignment improves the repeatability of GABA spectroscopy data. However, independently aligning all on and off subspectra can lead to artifacts and worse repeatability when compared with nonaligned data.
Keywords: GABA; MRS; frequency alignment; repeatability; subtraction artifact.
Copyright © 2012 Wiley Periodicals, Inc.