It is believed Lab-on-Chip systems will become a mainstream technology within the next centuries. Especially because of new findings in molecular medicine and global trends such as the changing global population in third world countries and an ageing population in industrial countries, the need for fast and reliable diagnostics is rising tremendously. Hence, diagnostics have to become more frequently and more easily available. In this regard, technologies have to be found that enable the cost-effective production and hence an affordable price. In a joint-project between seven Fraunhofer institutes a Lab-on-Chip system was developed which consists of a credit-card-sized cartridge and a base station. The cartridges contain besides the reagents necessary for a specific assay also functionalities such as pumping or heating enabling a self-contained system without any fluidic interfaces, which tend to be error-prone. Because of the modularity of the system it is possible to integrate an optical sensor as well an electrochemical sensor into the cartridge. Hence, the system can be customized to serve the needs of the particular assays. This chapter will describe the system including generic design rules for such Lab-on-Chip systems, the development of these rules into a modular Lab-on-Chip system, the integration of biomedical assays, and the production possibility of this system.