Analysis of tolerance and behavioral/physical dependence during chronic CB1 agonist treatment: effects of CB1 agonists, antagonists, and noncannabinoid drugs

J Pharmacol Exp Ther. 2013 Feb;344(2):319-28. doi: 10.1124/jpet.112.198374. Epub 2012 Nov 29.

Abstract

Behavioral studies of chronic CB(1) receptor activation may provide a pharmacological approach to understanding efficacy-related differences among CB(1) ligands as well as mechanistic commonalities between cannabinoid and noncannabinoid drugs. In the present studies, the effects of CB(1) agonists [(6aR,10aR)-3-(1-adamantyl)-6,6,9-trimethyl-6a,7,10,10a-tetrahydrobenzo[c]chromen-1-ol (AM411), 9β-(hydroxymethyl)-3-(1-adamantyl)-hexahydrocannabinol (AM4054), R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate (WIN55,212.2), Δ(9)-tetrahydrocannabinol (Δ(9)-THC), (R)-(+)-arachidonyl-1'-hydroxy-2'-propylamide (methanandamide)], CB(1) antagonists [5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (SR141716A), 5-(4-alkylphenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (AM4113)], and dopamine (DA)-related [methamphetamine, (±)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF82958), (R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390), (6aR)-5,6,6a,7-tetrahydro-6-propyl-4H-dibenzo[de,g]quinoline-10,11-diol (R-(-)-NPA), haloperidol] and opioid (morphine, naltrexone) drugs on scheduled-controlled responding under a 30-response fixed ratio schedule of stimulus-shock termination in squirrel monkeys were compared before and during chronic treatment with the long-acting CB(1) agonist AM411 (1.0 mg/kg per day, i.m.). Prechronic treatment with all drugs except naltrexone (1-10 mg/kg) produced dose-related decreases in responses rates. Dose-response re-determinations during chronic treatment revealed the following: 1) >250-fold (AM411, methanandamide) and >45-fold (AM4054, WIN55,212.2, Δ(9)-THC) rightward shifts in the ED(50) values for CB(1) agonists; 2) >100-fold and >20-fold leftward shifts in the ED(50) values for SR141716A and AM4113, respectively; and 3) approximately 4.8-fold and 10-fold rightward shifts in the ED(50) values for methamphetamine and the DA D(2) agonist R-(-)-NPA, respectively. Dose-response relationships for other DA-related and opioid drugs were unchanged by chronic CB(1) agonist treatment. Differences in the magnitude of tolerance among CB(1) agonists during chronic treatment may be indicative of differences in their pharmacological efficacy, whereas the enhanced sensitivity to behaviorally disruptive effects of CB(1) antagonists may provide evidence for CB(1)-related behavioral and/or physical dependence. Finally, the development of cross-tolerance to methamphetamine and R-(-)-NPA bolsters previous evidence of interplay between CB(1) and DA D(2) signaling mechanisms.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Behavior, Animal / drug effects*
  • Cannabinoid Receptor Agonists / adverse effects
  • Cannabinoid Receptor Agonists / pharmacology*
  • Cannabinoid Receptor Antagonists / pharmacology*
  • Conditioning, Operant / drug effects
  • Dopamine Agents / pharmacology*
  • Dose-Response Relationship, Drug
  • Drug Interactions
  • Drug Tolerance
  • Electroshock
  • Ligands
  • Male
  • Photic Stimulation
  • Receptor, Cannabinoid, CB1 / agonists*
  • Receptor, Cannabinoid, CB1 / antagonists & inhibitors
  • Saimiri
  • Substance Withdrawal Syndrome / etiology*
  • Substance Withdrawal Syndrome / psychology

Substances

  • Cannabinoid Receptor Agonists
  • Cannabinoid Receptor Antagonists
  • Dopamine Agents
  • Ligands
  • Receptor, Cannabinoid, CB1