Introduction: Regulation of phosphate homeostasis is essential for mineralization and enchondral ossification. Fibroblast growth factor 23 (FGF23) and its obligatory co-receptor Klotho (KL) play a key role in this process by influencing both renal phosphate reabsorption and vitamin D metabolism. In disease, excessive action of FGF23 leads to hypophosphatemic rickets, while its deficiency causes tumoral calcinosis. Although osteocytes and osteoblasts are widely seen as the primary source of FGF23 under physiological conditions, the origin of systemic FGF23 remains controversial. In this study, we investigated the expression of FGF23 and KL in porcine growth plate cartilage, adjacent tissues, and parenchymal tissues.
Materials and methods: Tissue samples were obtained from 4- to 6-week-old piglets. mRNA expression was quantified by real-time PCR and normalized to 18S rRNA. Immunohistochemical staining was performed for FGF23, KL, collagen type X, and FGF receptor 1. Growth plate chondrocyte subpopulations were acquired by collagenase digestion of growth plate explants and subsequent density gradient centrifugation.
Results: We could detect both FGF23 and KL mRNA and protein in growth plate chondrocytes. FGF23 expression was mainly found in hypertrophic and resting chondrocytes. Furthermore, significant expression of both genes was observed in bone, liver, and spleen.
Conclusion: These data challenge previous expression analyses, in particular theories of bone as the exclusive source of FGF23. Moreover, significant expression of FGF23 and KL within the growth plate and adjacent tissues imply a potential local role of FGF23 in chondrocyte differentiation and tissue mineralization.