Mechanistic target of rapamycin small interfering RNA and rapamycin synergistically inhibit tumour growth in a mouse xenograft model of human oesophageal carcinoma

J Int Med Res. 2012;40(5):1636-43. doi: 10.1177/030006051204000502.

Abstract

Objectives: To investigate the effect of mechanistic target of rapamycin (mTOR)-specific small interfering RNA (siRNA) and rapamycin on tumour size and levels of hypoxia inducible factor 1α(HIF-1α), vascular endothelial growth factor (VEGF) and mTOR proteins, and mTOR mRNA, in a mouse xenograft model of human oesophageal carcinoma.

Methods: Tumours were induced in BALB/c nude mice using the human oesophageal squamous cell carcinoma cell line, EC1, injected subcutaneously. Animals were divided into four treatment groups (n = 5 per group) after 7 days: control (phosphate buffered saline, daily intraperitoneal [i.p.] injection); 50 μg/kg rapamycin, daily i.p. injection; 3 μg/kg mTOR siRNA, daily i.p. injection; combined mTOR siRNA and rapamycin, daily i.p. injections. Tumour volume was measured 21 days after xenograft. Levels of mTOR, VEGF and HIF-1α were assessed via immunohistochemistry and in situ hybridization.

Results: mTOR siRNA and/or rapamycin significantly decreased tumour volume and levels of HIF-1α, VEGF and mTOR protein, and mTOR mRNA. Combination treatment was significantly more effective than either treatment alone.

Conclusions: mTOR siRNA and/or rapamycin inhibited the growth of oesophageal carcinoma in vivo. This may represent a novel and effective treatment strategy for oesophageal carcinoma.

MeSH terms

  • Animals
  • Antibiotics, Antineoplastic / pharmacology*
  • Carcinoma / drug therapy*
  • Carcinoma / metabolism
  • Carcinoma / pathology
  • Cell Line, Tumor
  • Esophageal Neoplasms / drug therapy*
  • Esophageal Neoplasms / metabolism
  • Esophageal Neoplasms / pathology
  • Female
  • Gene Expression
  • Gene Knockdown Techniques
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • RNA, Small Interfering / genetics
  • Sirolimus / pharmacology*
  • TOR Serine-Threonine Kinases / antagonists & inhibitors
  • TOR Serine-Threonine Kinases / genetics*
  • TOR Serine-Threonine Kinases / metabolism
  • Tumor Burden / drug effects
  • Vascular Endothelial Growth Factor A / genetics
  • Vascular Endothelial Growth Factor A / metabolism
  • Xenograft Model Antitumor Assays

Substances

  • Antibiotics, Antineoplastic
  • HIF1A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • RNA, Small Interfering
  • VEGFA protein, human
  • Vascular Endothelial Growth Factor A
  • MTOR protein, human
  • TOR Serine-Threonine Kinases
  • Sirolimus