Objective: To investigate whether the microRNA-21 gene (miR-21) could regulate renal cancer cells invasion by downregulation of TFC21 and KISS1.
Methods: Quantitative real-time polymerase chain reaction was applied to evaluate the expression level of miRNA-21 in renal cancer and normal renal cell samples. The regulated effects of miR-21 to TCF21 were detected by Western blot after pre/anti-miR-21 was transfected to Caki-1 cells. The luciferase activity assay was used to reveal the predicted target gene of miR-21 was direct and specific. Small interfering RNA-TCF21 was transfected to Caki-1 cells to inhibit the expression of the TCF21 gene. Next, the expression of the KISS1 gene was detected by Western blot in Caki-1 cells with TCF21 gene silencing. The expression vector, pcDNA3.1-KISS1, was transfected to Caki-1 cells to upregulate the expression of the KISS1 gene. The invasion ability of Caki-1 cells with KISS1 overexpression was analyzed using the Transwell assay.
Results: Our study showed that miR-21 was upregulated in human renal cell carcinoma specimens compared with its expression in normal renal cell specimens. Pre-miR-21 could upregulate the expression of miR-21 and downregulate the expression of TCF21, and anti-miR-21 showed the opposite effects. siRNA-TCF21 decreased the expression of the TCF21 protein, and the expression of KISS1 was downregulated in Caki-1 cells with TCF21 gene silencing. pcDNA3.1-KISS1 transfection upregulated the expression of the KISS1 protein, and the invasion ability of Caki-1 cells with KISS1 overexpression decreased markedly.
Conclusion: Aberrantly expressed miR-21 might regulate the TCF21-KISS1-associated renal cell carcinoma cell invasion pathway, and this miRNA signature could offer a novel potential therapeutic strategy for renal cell carcinoma.
Copyright © 2012 Elsevier Inc. All rights reserved.