The interplay of translation and mRNA turnover has helped unveil how the regulation of gene expression is a continuum in which events that occur during the birth of a transcript in the nucleus can have profound effects on subsequent steps in the cytoplasm. Exemplifying this continuum is nonsense-mediated mRNA decay (NMD), the process wherein a premature stop codon affects both translation and mRNA decay. Studies of NMD helped lead us to the therapeutic concept of treating a subset of patients suffering from multiple genetic disorders due to nonsense mutations with a single small-molecule drug that modulates the translation termination process at a premature nonsense codon. Here we review both translation termination and NMD, and our subsequent efforts over the past 15 years that led to the identification, characterization, and clinical testing of ataluren, a new therapeutic with the potential to treat a broad range of genetic disorders due to nonsense mutations.