Translation elongation factor P (EF-P) is critical for virulence in bacteria. EF-P is present in all bacteria and orthologous to archaeal and eukaryotic initiation factor 5A, yet the biological function has so far remained enigmatic. Here, we demonstrate that EF-P is an elongation factor that enhances translation of polyproline-containing proteins: In the absence of EF-P, ribosomes stall at polyproline stretches, whereas the presence of EF-P alleviates the translational stalling. Moreover, we demonstrate the physiological relevance of EF-P to fine-tune the expression of the polyproline-containing pH receptor CadC to levels necessary for an appropriate stress response. Bacterial, archaeal, and eukaryotic cells have hundreds to thousands of polyproline-containing proteins of diverse function, suggesting that EF-P and a/eIF-5A are critical for copy-number adjustment of multiple pathways across all kingdoms of life.