The B subunit of an AB5 toxin produced by Salmonella enterica serovar Typhi up-regulates chemokines, cytokines, and adhesion molecules in human macrophage, colonic epithelial, and brain microvascular endothelial cell lines

Infect Immun. 2013 Mar;81(3):673-83. doi: 10.1128/IAI.01043-12. Epub 2012 Dec 17.

Abstract

The principal function of bacterial AB5 toxin B subunits is to interact with glycan receptors on the surfaces of target cells and mediate the internalization of holotoxin. However, B subunit-receptor interactions also have the potential to impact cell signaling pathways and, in so doing, contribute to pathogenesis independently of the catalytic (toxic) A subunits. Various Salmonella enterica serovars, including Salmonella enterica serovar Typhi, encode an AB5 toxin (ArtAB), the A subunit of which is an ADP-ribosyltransferase related to the S1 subunit of pertussis toxin. However, although the A subunit is able to catalyze ADP-ribosylation of host G proteins, a cytotoxic phenotype has yet to be identified for the holotoxin. We therefore examined the capacity of the purified B subunit (ArtB) from S. Typhi to elicit cytokine, chemokine, and adhesion molecule responses in human macrophage (U937), colonic epithelial (HCT-8) cell, and brain microvascular endothelial cell (HBMEC) lines. Secretion of the chemokines monocyte chemotactic protein 1 (MCP-1) and interleukin 8 (IL-8) was increased in all three tested cell lines, with macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and granulocyte colony-stimulating factor (G-CSF) also significantly increased in U937 cells. ArtB also upregulated the cytokines tumor necrosis factor alpha (TNF-α) and IL-6 in HBMECs and HCT-8 cells, but not in U937 cells, while intercellular adhesion molecule 1 (ICAM-1) was upregulated in HCT-8 and U937 cells and vascular cell adhesion molecule 1 (VCAM-1) was upregulated in HBMECs. Thus, ArtB may contribute to pathogenesis independently of the A subunit by promoting and maintaining a strong inflammatory response at the site of infection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Toxins / chemistry
  • Bacterial Toxins / toxicity*
  • Brain / blood supply
  • Cell Adhesion / physiology
  • Cell Line
  • Cytokines / genetics
  • Cytokines / metabolism*
  • Dose-Response Relationship, Drug
  • Endothelial Cells / drug effects*
  • Endothelial Cells / metabolism
  • Epithelial Cells / drug effects*
  • Epithelial Cells / metabolism
  • Gene Expression Regulation / drug effects
  • Gene Expression Regulation / immunology
  • Humans
  • Intestinal Mucosa / cytology
  • Macrophages / drug effects*
  • Macrophages / metabolism
  • Protein Subunits / chemistry
  • Protein Subunits / metabolism
  • Salmonella typhi / metabolism*

Substances

  • Bacterial Toxins
  • Cytokines
  • Protein Subunits