Assay validation for the assessment of adipogenesis of multipotential stromal cells--a direct comparison of four different methods

Cytotherapy. 2013 Jan;15(1):89-101. doi: 10.1016/j.jcyt.2012.07.001.

Abstract

Background aims: Mesenchymal stromal cells (MSCs) are regenerative and immuno-privileged cells that are used for both tissue regeneration and treatment of severe inflammation-related disease. For quality control of manufactured MSC batches in regard to mature fat cell contamination, a quantitative method for measuring adipogenesis is needed.

Methods: Four previously proposed methods were validated with the use of bone marrow (BM) MSCs during a 21-day in vitro assay. Oil red staining was scored semiquantitatively; peroxisome proliferator activated receptor-γ and fatty acid binding protein (FABP)4 transcripts were measured by quantitative real-time polymerase chain reaction; FABP4 protein accumulation was evaluated by flow cytometry; and Nile red/4',6-diamidino-2-phenylindole (DAPI) ratios were measured in fluorescent microplate assay. Skin fibroblasts and MSCs from fat pad, cartilage and umbilical cord were used as controls.

Results: Oil red staining indicated considerable heterogeneity between BM donors and individual cells within the same culture. FABP4 transcript levels increased 100- to 5000-fold by day 21, with large donor variability observed. Flow cytometry revealed increasing intra-culture heterogeneity over time; more granular cells accumulated more FABP4 protein and Nile red fluorescence compared with less granular cells. Nile red increase in day-21 MSCs was ~5- and 4-fold, measured by flow cytometry or microplate assay, respectively. MSC proliferation/apoptosis was accounted through the use of Nile red/DAPI ratios; adipogenesis levels in day-21 BM MSCs increased ~13-fold, with significant correlations with oil red scoring observed for MSC from other sources.

Conclusions: Flow cytometry permits the study of MSC differentiation at the single-cell level and sorting more and less mature cells from mixed cell populations. The microplate assay with the use of the Nile red/DAPI ratio provides rapid quantitative measurements and could be used as a low-cost, high-throughput method to quality-control MSC batches from different tissue sources.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipogenesis / genetics
  • Adipogenesis / physiology*
  • Adolescent
  • Adult
  • Aged
  • Cells, Cultured
  • Child
  • Female
  • Flow Cytometry
  • Humans
  • Male
  • Mesenchymal Stem Cells / cytology*
  • Middle Aged
  • Young Adult