Background: The Fundamentals of Laparoscopic Surgery (FLS) trainer box is now established as a standard for evaluating minimally invasive surgical skills. A particularly simple task in this trainer box is the peg transfer task which is aimed at testing the surgeon's bimanual dexterity, hand-eye coordination, speed, and precision. The Virtual Basic Laparoscopic Skill Trainer (VBLaST) is a virtual version of the FLS tasks which allows automatic scoring and real-time, subjective quantification of performance without the need of a human proctor. In this article we report validation studies of the VBLaST peg transfer (VBLaST-PT) simulator.
Methods: Thirty-five subjects with medical background were divided into two groups: experts (PGY 4-5, fellows, and practicing surgeons) and novices (PGY 1-3). The subjects were asked to perform the peg transfer task on both the FLS trainer box and the VBLaST-PT simulator; their performance was evaluated based on established metrics of error and time. A new length of trajectory (LOT) metric has also been introduced for offline analysis. A questionnaire was used to rate the realism of the virtual system on a 5-point Likert scale.
Results: Preliminary face validation of the VBLaST-PT with 34 subjects rated on a 5-point Likert scale questionnaire revealed high scores for all aspects of simulation, with 3.53 being the lowest mean score across all questions. A two-tailed Mann-Whitney test performed on the total scores showed significant (p = 0.001) difference between the groups. A similar test performed on the task time (p = 0.002) and the LOT (p = 0.004) separately showed statistically significant differences between the experts and the novices (p < 0.05). The experts appear to be traversing shorter overall trajectories in less time than the novices.
Conclusion: VBLaST-PT showed both face and construct validity and has promise as a substitute for the FLS for training peg transfer skills.