Theoretical characterization of X-ray absorption, emission, and photoelectron spectra of nitrogen doped along graphene edges

J Phys Chem A. 2013 Jan 24;117(3):579-89. doi: 10.1021/jp307405r. Epub 2013 Jan 14.

Abstract

K-edge X-ray absorption (XAS), emission (XES), and photoelectron (XPS) spectra of nitrogen doped along graphene edges are systematically investigated by using first-principles methods. In this study we considered pyridinium-like, pyridine-like, cyanide-like, and amine-like nitrogens at armchair and zigzag edges and pyrrole-like nitrogen at armchair edge as well as graphite-like nitrogen at graphene interior site. Our results indicate that nitrogen configuration and its location (armchair or zigzag edge) in nitrogen-doped graphene can be identified via the spectral analysis. Furthermore, some controversial spectral features observed in experiment for N-doped graphene-like materials are unambiguously assigned. The present analysis gives an explanation to the reason why the peak assignment is usually made differently between XPS and XAS.