The degree of filling of titania nanostructures with a solid hole-conducting material is important for the performance of solid-state dye-sensitized solar cells (ssDSSCs). Different ways to infiltrate the hole-conducting polymer poly(3-hexylthiophene) (P3HT) into titania structures, both granular structures as they are already applied commercially and tailored sponge nanostructures, are investigated. The solar cell performance is compared to the morphology determined with scanning electron microscopy (SEM) and time-of-flight grazing incidence small-angle neutron scattering (TOF-GISANS). The granular titania structure, commonly used for ssDSSCs, shows a large distribution of particle and pore sizes, with porosities in the range from 41 to 67%, including even dense parts without pores. In contrast, the tailored sponge nanostructure has well-defined pore sizes of 25 nm with an all-over porosity of 54%. Filling of the titania structures with P3HT by solution casting results in a mesoscopic P3HT overlayer and consequently a bad solar cell performance, even though a filling ratio of 67% is observed. For the infiltration by repeated spin coating, only 57% pore filling is achieved, whereas filling by soaking in the solvent with subsequent spin coating yields filling as high as 84% in the case of the tailored titania sponge structures. The granular titania structure is filled less completely than the well-defined porous structures. The solar cell performance is increased with an increasing filling ratio for these two ways of infiltration. Therefore, filling by soaking in the solvent with subsequent spin coating is proposed.