Five Y. pestis bacteriophages obtained from various sources were characterized to determine their biological properties, including their taxonomic classification, host range and genomic diversity. Four of the phages (YpP-G, Y, R and YpsP-G) belong to the Podoviridae family, and the fifth phage (YpsP-PST) belongs to the Myoviridae family, of the order Caudovirales comprising of double-stranded DNA phages. The genomes of the four Podoviridae phages were fully sequenced and found to be almost identical to each other and to those of two previously characterized Y. pestis phages Yepe2 and φA1122. However, despite their genomic homogeneity, they varied in their ability to lyse Y. pestis and Y. pseudotuberculosis strains. The five phages were combined to yield a "phage cocktail" (tentatively designated "YPP-100") capable of lysing the 59 Y. pestis strains in our collection. YPP-100 was examined for its ability to decontaminate three different hard surfaces (glass, gypsum board and stainless steel) experimentally contaminated with a mixture of three genetically diverse Y. pestis strains CO92, KIM and 1670G. Five minutes of exposure to YPP-100 preparations containing phage concentrations of ca. 10(9), 10(8) and 10(7) PFU/mL completely eliminated all viable Y. pestis cells from all three surfaces, but a few viable cells were recovered from the stainless steel coupons treated with YPP-100 diluted to contain ca. 10(6) PFU/mL. However, even that highly diluted preparation significantly (p = < 0.05) reduced Y. pestis levels by ≥ 99.97%. Our data support the idea that Y. pestis phages may be useful for decontaminating various hard surfaces naturally- or intentionally-contaminated with Y. pestis.