We tested whether snow gum (Eucalyptus pauciflora) trees growing in thermally contrasting environments exhibit generalizable temperature (T) response functions of leaf respiration (R) and fluorescence (Fo). Measurements were made on pot-grown saplings and field-grown trees (growing between 1380 and 2110 m a.s.l.). Using a continuous, high-resolution protocol, we quantified T response curves of R and Fo--these data were used to identify an algorithm for modelling R-T curves at subcritical T's and establish variations in heat tolerance. For the latter, we quantified Tmax [T where R is maximal] and Tcrit [T where Fo rises rapidly]. Tmax ranged from 51 to 57 °C, varying with season (e.g. winter summer). Tcrit ranged from 41 to 49 °C in summer and from 58 to 63 °C in winter. Thus, surprisingly, leaf energy metabolism was more heat-tolerant in trees experiencing ice-encasement in winter than warmer conditions in summer. A polynomial model fitted to log-transformed R data provided the best description of the T-sensitivity of R (between 10 and 45 °C); using these model fits, we found that the negative slope of the Q10 -T relationship was greater in winter than in summer. Collectively, our results (1) highlight high-T limits of energy metabolism in E. pauciflora and (2) provide a framework for improving representation of T-responses of leaf R in predictive models.
Keywords: Arrhenius; Q10; acclimation; heat stress; leaves; respiration.
© 2012 John Wiley & Sons Ltd.