Efficient assembly of the influenza virus RNA-dependent RNA polymerase, a heterotrimeric complex formed by three subunits (PA, PB1 and PB2) is critical for virus replication and pathogenicity. Therefore, interfering with the assembly of the RNA-dependent RNA polymerase complex could offer novel and effective anti-influenza therapeutics. In the present study, we show that a short peptide derived from amino acids 731-757 of PB1 (PB1(731-757)) can disrupt the interaction between the C-terminal part of PB1 (denoted as PB1c corresponding to PB1(676-757)) and the N-terminal part of PB2 (denoted as PB2n corresponding to PB2(1-40) ). We further show that PB1(731-757) is capable of inhibiting viral polymerase activity and viral replication. Interestingly, we find that PB1(731-757) interacts with PB1c rather than PB2n. Furthermore, mutational analyses show that the hydrophobic sites of PB1c play an essential role in the PB1c-PB1(731-757) interaction. The characterization of the inhibitory effect of PB1(731-757) on viral polymerase activity and viral replication could offer a potential target for anti-influenza drug development.
© 2012 The Authors Journal compilation © 2012 FEBS.