Notch1 is required for hypoxia-induced proliferation, invasion and chemoresistance of T-cell acute lymphoblastic leukemia cells

J Hematol Oncol. 2013 Jan 5:6:3. doi: 10.1186/1756-8722-6-3.

Abstract

Background: Notch1 is a potent regulator known to play an oncogenic role in many malignancies including T-cell acute lymphoblastic leukemia (T-ALL). Tumor hypoxia and increased hypoxia-inducible factor-1α (HIF-1α) activity can act as major stimuli for tumor aggressiveness and progression. Although hypoxia-mediated activation of the Notch1 pathway plays an important role in tumor cell survival and invasiveness, the interaction between HIF-1α and Notch1 has not yet been identified in T-ALL. This study was designed to investigate whether hypoxia activates Notch1 signalling through HIF-1α stabilization and to determine the contribution of hypoxia and HIF-1α to proliferation, invasion and chemoresistance in T-ALL.

Methods: T-ALL cell lines (Jurkat, Sup-T1) transfected with HIF-1α or Notch1 small interference RNA (siRNA) were incubated in normoxic or hypoxic conditions. Their potential for proliferation and invasion was measured by WST-8 and transwell assays. Flow cytometry was used to detect apoptosis and assess cell cycle regulation. Expression and regulation of components of the HIF-1α and Notch1 pathways and of genes related to proliferation, invasion and apoptosis were assessed by quantitative real-time PCR or Western blot.

Results: Hypoxia potentiated Notch1 signalling via stabilization and activation of the transcription factor HIF-1α. Hypoxia/HIF-1α-activated Notch1 signalling altered expression of cell cycle regulatory proteins and accelerated cell proliferation. Hypoxia-induced Notch1 activation increased the expression of matrix metalloproteinase-2 (MMP2) and MMP9, which increased invasiveness. Of greater clinical significance, knockdown of Notch1 prevented the protective effect of hypoxia/HIF-1α against dexamethasone-induced apoptosis. This sensitization correlated with losing the effect of hypoxia/HIF-1α on Bcl-2 and Bcl-xL expression.

Conclusions: Notch1 signalling is required for hypoxia/HIF-1α-induced proliferation, invasion and chemoresistance in T-ALL. Pharmacological inhibitors of HIF-1α or Notch1 signalling may be attractive interventions for T-ALL treatment.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Growth Processes / physiology
  • Cell Hypoxia / physiology
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism
  • Jurkat Cells
  • Matrix Metalloproteinase 2 / biosynthesis
  • Matrix Metalloproteinase 2 / genetics
  • Matrix Metalloproteinase 2 / metabolism
  • Matrix Metalloproteinase 9 / biosynthesis
  • Matrix Metalloproteinase 9 / genetics
  • Matrix Metalloproteinase 9 / metabolism
  • Neoplasm Invasiveness
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma / genetics
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma / metabolism*
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma / pathology*
  • RNA, Small Interfering / administration & dosage
  • RNA, Small Interfering / genetics
  • Receptor, Notch1 / genetics
  • Receptor, Notch1 / metabolism*
  • Signal Transduction
  • Transfection
  • Up-Regulation

Substances

  • HIF1A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • NOTCH1 protein, human
  • RNA, Small Interfering
  • Receptor, Notch1
  • Matrix Metalloproteinase 2
  • Matrix Metalloproteinase 9