Because islet transplantation has become a promising treatment option for patients with type 1 diabetes, a noninvasive imaging method is greatly needed to monitor these islets over time. Here, we developed an (18)F-labeled exendin-4 in high specific activity for islet imaging by targeting the glucagonlike peptide-1 receptor (GLP-1R).
Methods: Tetrazine ligation was used to radiolabel exendin-4 with (18)F. The receptor binding of (19/18)F-tetrazine trans-cyclooctene (TTCO)-Cys(40)-exendin-4 was evaluated in vitro with INS-1 cell and in vivo on INS-1 tumor (GLP-1R positive) and islet transplantation models.
Results: (18)F-TTCO-Cys(40)-exendin-4 was obtained in high specific activity and could specifically bind to GLP-1R in vitro and in vivo. Unlike the radiometal-labeled exendin-4, (18)F-TTCO-Cys(40)-exendin-4 has much lower kidney uptake. (18)F-TTCO-Cys(40)-exendin-4 demonstrated its great potential for transplanted islet imaging: the liver uptake value derived from small-animal PET images correlated well with the transplanted β-cell mass determined by immunostaining. Autoradiography showed that the localizations of radioactive signal indeed corresponded to the distribution of islet grafts in the liver of islet-transplanted mice.
Conclusion: (18)F-TTCO-Cys(40)-exendin-4 demonstrated specific binding to GLP-1R. This PET probe provides a method to noninvasively image intraportally transplanted islets.