Inflammation can act as a crucial mediator of epithelial-to-mesenchymal transition (EMT). In this study, we show that oncostatin M (OSM) is expressed in an autocrine/paracrine fashion in invasive breast carcinoma. OSM stimulation promotes spontaneous lung metastasis of MCF-7 xenografts in nude mice. A conspicuous epigenetic transition was induced by OSM stimulation not only in breast cancer cell lines but also in MCF-7 xenografts in nude mice. The expression of miR-200 and let-7 family members in response to OSM stimulation was downregulated in a signal transducer and activator of transcription factor 3 (Stat3)-dependent manner, resulting in comprehensive alterations of the transcription factors and oncoproteins targeted by these microRNAs. Inhibition of Stat3 activation or the ectopic expression of let-7 and miR-200 effectively reversed the mesenchymal phenotype of breast cancer cells. Stat3 promotes the transcription of Lin-28 by directly binding to the Lin-28 promoter, resulting in the repression of let-7 expression and concomitant upregulation of the let-7 target, high-mobility group A protein 2 (HMGA2). Knock down of HMGA2 significantly impairs OSM-driven EMT. Our data indicate that downregulation of let-7 and miR-200 levels initiates and maintains OSM-induced EMT phenotypes, and HMGA2 acts as a master switch of OSM-induced EMT. These findings highlight the importance of Stat3-coordinated Lin-28B-let-7-HMGA2 and miR-200-ZEB1 circuits in the cytokine-mediated phenotypic reprogramming of breast cancer cells.