A requirement for Nedd9 in luminal progenitor cells prior to mammary tumorigenesis in MMTV-HER2/ErbB2 mice

Oncogene. 2014 Jan 23;33(4):411-20. doi: 10.1038/onc.2012.607. Epub 2013 Jan 14.

Abstract

Overexpression of the NEDD9/HEF1/Cas-L scaffolding protein is frequent, and drives invasion and metastasis in breast, head and neck, colorectal, melanoma, lung and other types of cancer. We have examined the consequences of genetic ablation of Nedd9 in the MMTV-HER2/ERBB2/neu mouse mammary tumor model. Unexpectedly, we found that only a limited effect on metastasis in MMTV-neu;Nedd9(-/-) mice compared with MMTV-neu;Nedd9(+/+) mice, but instead a dramatic reduction in tumor incidence (18 versus 80%), and a significantly increased latency until tumor appearance. Orthotopic reinjection and tail-vein injection of cells arising from tumors, coupled with in vivo analysis, indicated tumors arising in MMTV-neu;Nedd9(-/-) mice had undergone mutational selection that overcame the initial requirement for Nedd9. To better understand the defects in early tumor growth, we compared mammary progenitor cell pools from MMTV-neu;Nedd9(-/-) versus MMTV-neu;Nedd9(+/+) mice. The MMTV-neu;Nedd9(-/-) genotype selectively reduced both the number and colony-forming potential of mammary luminal epithelial progenitor cells, while not affecting basal epithelial progenitors. MMTV-neu;Nedd9(-/-) mammospheres had striking defects in morphology and cell polarity. All of these defects were seen predominantly in the context of the HER2/neu oncogene, and were not associated with randomization of the plane of mitotic division, but rather with depressed expression the cell attachment protein FAK, accompanied by increased sensitivity to small molecule inhibitors of FAK and SRC. Surprisingly, in spite of these significant differences, only minimal changes were observed in the gene expression profile of Nedd9(-/-) mice, indicating critical Nedd9-dependent differences in cell growth properties were mediated via post-transcriptional regulation of cell signaling. Coupled with emerging data indicating a role for NEDD9 in progenitor cell populations during the morphogenesis of other tissues, these results indicate a functional requirement for NEDD9 in the growth of mammary cancer progenitor cells.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism*
  • Animals
  • Carcinogenesis / genetics
  • Carcinogenesis / metabolism*
  • Female
  • Mammary Neoplasms, Experimental / genetics
  • Mammary Neoplasms, Experimental / metabolism*
  • Mammary Neoplasms, Experimental / pathology
  • Mammary Tumor Virus, Mouse
  • Mice
  • Mice, Knockout
  • Neoplasm Invasiveness / genetics*
  • Neoplasm Invasiveness / pathology
  • Neoplastic Stem Cells / metabolism
  • Neoplastic Stem Cells / pathology

Substances

  • Adaptor Proteins, Signal Transducing
  • NEDD9 protein, mouse