Background: Microbicide toxicity may reduce the efficacy of topical preexposure prophylaxis for human immunodeficiency virus (HIV) transmission. Noninvasive quantitative measures of microbicide toxicity would usefully inform microbicide development.
Methods: Ten subjects received 3 one-time interventions: 5 mL of Normosol-R fluid alone (negative control), 5 mL of 2% nonoxynol-9 (N-9) gel, and 5 mL of Normosol-R with coital simulation and sigmoidoscopic biopsy (CS + BX). Each dose of N-9 and Normosol-R contained 500 µCi of (99m)technetium-diethylene triamine pentaacetic acid. Plasma and urine radioactivity was assessed over 24 hours.
Results: The plasma radioisotope concentration peaked 1 hour after N-9 dosing. The mean maximum radioisotope concentration after N-9 receipt was 12.0 times (95% confidence interval [CI], 6.8-21.0) and 8.4 times (95% CI, 5.2-13.5) the mean concentration after Normosol-R control receipt and CS + BX receipt, respectively; paired differences persisted for 24 hours. After N-9 dosing, the urine isotope level was 3.6 times (95% CI, 1.1-11.4) the level observed 8 hours after Normosol-R control receipt and 4.0 times (95% CI, 1.4-11.4) the level observed 4 hours after CS + BX receipt. Permeability after CS + BX receipt was greater than that after Normosol-R control receipt in 0-2-hour urine specimens only (mean permeability, 2.4; 95% CI, 1.0-5.8) but was not greater in blood.
Conclusions: Plasma sampling after rectal radioisotope administration provided quantitative estimates of altered mucosal permeability after chemical and mechanical stresses. Permeability testing may provide a useful noninvasive adjunct to assess the mucosal effects of candidate microbicides. Clinical Trials Registration. NCT00389311.