Introduction: Organ failure and tissue loss are challenging health issues due to widespread injury, the lack of organs for transplantation and limitations of conventional artificial implants. The field of tissue engineering aims to provide alternative living substitutes that restore, maintain or improve tissue function.
Areas covered: In this paper, a wide range of porous scaffolds are reviewed, with an emphasis on phase-separation techniques that generate advantageous nanofibrous 3D scaffolds for stem cell-based tissue engineering applications. In addition, methods for presentation and delivery of bioactive molecules to mimic the properties of stem cell niches are summarized. Recent progress in using these bioinstructive scaffolds to support stem cell differentiation and tissue regeneration is also presented.
Expert opinion: Stem cells have great clinical potential because of their capability to differentiate into multiple cell types. Biomaterials have served as artificial extracellular environments to regulate stem cell behavior. Biomaterials with various physical, mechanical and chemical properties can be designed to control stem cell development for regeneration.
Conclusion: The research at the interface of stem cell biology and biomaterials has made and will continue to make exciting advances in tissue engineering.