Recent articles have advocated the possibility of obtaining Agatston coronary calcium scoring at 100 kVp by using a single adapted elevated calcium threshold. To evaluate the influence of kilovoltage potential protocols on the Agatston score, we acquired successive scans of a calcium scoring phantom at 4 levels of kilovoltage potential (80, 100, 120, and 140 kVp, 55 mAs) and measured semiautomatically the individual and the total Agatston score of 6 inserts (of 5-mm and 3-mm diameter) containing hydroxyapatite at different concentrations (800, 400, 200 mg/cm(3)). Our results showed that Agatston scores obtained at various low-kilovoltage potential protocols can be highly overestimated in some particular cases. At 80 kVp, for example, mean measured Agatston score was multiplied by a factor from 1.06 (5-mm highest density insert) to 2.67 (3-mm lowest density insert) compared with the Agatston scores performed at 120 kVp. Indeed in the one hand, reducing kilovoltage potential in multidetector CT acquisitions increase the CT density of coronary calcifications that can be measured on the reconstructed images. On the other hand, Agatston score is a multi-threshold measurement (with a step weighting function). Consequently low kilovoltage potential can lead to overweight some calcifications scores. For these reasons, Agatston score with low kilovoltage potential acquisition cannot be reliably adapted by a unique recalibration of the standard calcium attenuation threshold of 130 HU and requires a standardized CT acquisition protocol at 120 kVp. Alternatives to performing low-dose coronary artery calcium scans are either using coronary calcium scans with reduced tube current (low mAs) at 120 kVp with the iterative reconstructions or using mass/volume scoring (not influenced by kilovoltage potential variations). Finally, we emphasized that incorrect Agatston score evaluation may have important clinical, financial, and health care implications.
Copyright © 2013 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.