Interferon-α (IFNα) has enormous potential for anti-proliferative and anti-viral treatments. However, clinical success is still hampered due to its limited bioavailability and thus, lack of sustained modulation of disease-relevant protective programs. Consequently, we here examined whether IFNα immobilized on nanoscale ferromagnetic R-Chitosan carriers is capable of inducing rapid and sustained activation of STAT1 signaling. We report the spontaneous formation of a stable nanoparticle-IFNα protein corona, which was exploited to generate IFNα-loaded spheres, obviating the need to specifically couple the cytokine to the nanoparticles (NPs). Notably, comprehensive experimental approaches ensure that formation of the IFNα NP-corona does not affect the biological activity of the cytokine, as STAT1 signaling was efficiently activated. Employing human prostate cancer and melanoma cell models, we found that the intensity and duration of STAT1 phosphorylation as well as the downstream activation of pathobiologically relevant genes were dose and particle dependent. In comparison with free IFNα, IFNα-loaded spheres resulted in a more sustained biologically relevant STAT1 activation, demonstrated also by conferring innate cellular immunity against vesicular stomatitis virus (VSV) infection. For one, our study demonstrates the advantages of biodegradable IFNα-coated R-Chitosan NPs for controlled cytokine release, and thereby improved therapy. Second, we reveal that the permanent presence of IFNα and not just the initial STAT1 phosphorylation ensures sustained IFNα-dependent signaling.
Copyright © 2013 Elsevier Inc. All rights reserved.