Background: Asphyxiating Thoracic Dysplasia (ATD) belongs to the short rib polydactyly group and is characterized by a narrow thorax, short long bones and trident acetabular roof. Other reported features include polydactyly, renal, liver and retinal involvement. To date, mutations in IFT80, DYNC2H1, TTC21B and WDR19 have been reported in ATD. The clinical and molecular heterogeneity leads to difficulties in the evaluation of the long-term prognosis.
Methods: We investigated 53 ATD cases (23 living cases and 30 fetuses) from 39 families. They benefited from a combined approach of deep phenotyping and IFT80 and DYNC2H1 molecular screening.
Results: Among the 23 postnatal cases, pulmonary insufficiency was noted in 60% of cases, with tracheotomy requirement in five cases. Renal and liver diseases occurred respectively in 17% and 22% of cases, whereas retinal alteration was present in 50% of cases aged more than 5 years. We identified DYNC2H1 mutations in 23 families (59%) and IFT80 mutations in two families (5%). However, in six families, only one heterozygote mutation in either IFT80 or DYNC2H1 was identified. Finally, the two genes were excluded in 14 families (36%).
Conclusions: We conclude that DYNC2H1 is a major gene responsible for ATD, while IFT80 is rarely involved. The presence of only one mutation in six families and the exclusion of the two genes in 14 families support the involvement of other causal cilia genes. The long-term follow up emphasizes that the pulmonary prognosis is probably less pejorative and retinal involvement more frequent than previously thought.