Graphene oxide (GO) demonstrates interesting photoluminescence (PL) because of its unique heterogeneous atomic structure, which consists of variable sp(2)- and sp(3)-bonded carbons. In this study, we report the interaction between the luminescence of GO ranging from a single atomic layer to few-layered thin films and localized surface plasmon resonance (LSPR) from silver nanoparticles (Ag NPs). The photoluminescence of GO in the vicinity of the Ag NPs is enhanced significantly due to the near-field plasmonic effect by coupling electron-hole pairs of GO with oscillating electrons in Ag NPs, leading to an increased PL intensity and a decreased PL decay lifetime. The maxima 30-fold enhancement in PL intensity is obtained with an optimized film thickness of GO, and the luminescence image from a single atomic layer GO sheet is successfully observed with the assistance of the LSPR effect. The results provide an ideal platform for exploring the interactions between the fluorescence of two-dimensional layered materials and the LSPR effect.