Purpose: Results of multiple clinical trials suggest that EGF receptor (EGFR) tyrosine kinase inhibitors (TKI) exhibit negative effects on platinum-based chemotherapy in patients with lung cancer with wild-type (WT) EGFR, but the underlying molecular mechanisms are still uncertain. Studies that identify the mechanism of how TKIs negatively affect patients with WT EGFR are important for future development of effective strategies to target lung cancer. Thus, we returned to in vitro study to investigate and determine a possible explanation for this phenomenon.
Experimental design: We investigated the effects of TKIs and cisplatin on caspase-independent cell death (CID) and the role of CID in the efficacy of each drug and the combination. Furthermore, we studied the mechanism by which EGFR signaling pathway is involved in CID. Finally, on the basis of the identified mechanism, we tested the combinational effects of cisplatin plus suberoylanilide hydroxamic acid (SAHA) or erastin on CID.
Results: We found that gefitinib inhibited cisplatin-induced CID but not caspase-dependent apoptotic cell death. In WT EGFR cells, gefitinib not only inhibited CID but also failed to induce apoptosis, therefore compromising the efficacy of cisplatin. Inhibition of EGFR-ERK/AKT by gefitinib activates FOXO3a, which in turn reduces reactive oxygen species (ROS) and ROS-mediated CID. To overcome this, we showed that SAHA and erastin, the inducers of ROS-mediated CID, strongly enhanced the effect of cisplatin in WT EGFR cells.
Conclusion: TKI-mediated inhibition of CID plays an important role in the efficacy of chemotherapy. Moreover, FOXO3a is a key factor in the negative effects of TKI by eliminating cisplatin-induced ROS.
©2012 AACR.