Background: Ischemia/reperfusion (I/R) injury has a major impact on kidney graft function and survival. Animal studies have suggested a role for complement activation in mediating I/R injury; however, results are not unambiguous. Whether complement activation is involved in clinical I/R injury in humans is still unclear.
Methods: In the present study, we assessed the formation and release of C5b-9 during early reperfusion in clinical kidney transplantation in living donor, brain-dead donor, and cardiac dead donor kidney transplantation. By arteriovenous measurements and histologic studies, local terminal complement activation in the reperfused kidney was assessed.
Results: There was no release of soluble C5b-9 (sC5b-9) from living donor kidneys, nor was there a release of C5a. In contrast, instantly after reperfusion, there was a significant but transient venous release of sC5b-9 from the reperfused kidney graft in brain-dead donor and cardiac dead donor kidney transplantation. This short-term activation of the terminal complement cascade in deceased-donor kidney transplantation was not reflected by renal tissue deposition of C5b-9 in biopsies taken 45 min after reperfusion.
Conclusions: This systematic study in human kidney transplantation shows an acute but nonsustained sC5b-9 release on reperfusion in deceased-donor kidney transplantation. This instantaneous, intravascular terminal complement activation may be induced by intravascular cellular debris and hypoxic or injured endothelium.