Linear and non-linear techniques for inferring causal relations between the brain signals representing the underlying neuronal systems have become a powerful tool to extract the connectivity patterns in the brain. Typically these tools employ the idea of Granger causality, which is ultimately based on the temporal precedence between the signals. At the same time, phase synchronization between coupled neural ensembles is considered a mechanism implemented in the brain to integrate relevant neuronal ensembles to perform a cognitive or perceptual task. Phase synchronization can be studied by analyzing the effects of phase-locking between the brain signals. However, we should expect that there is no one-to-one mapping between the observed phase lag and the time precedence as specified by physically interacting systems. Specifically, phase lag observed between two signals may interfere with inferring causal relations. This could be of critical importance for the coupled non-linear oscillating systems, with possible time delays in coupling, when classical linear cross-spectrum strategies for solving phase ambiguity are not efficient. To demonstrate this, we used a prototypical model of coupled non-linear systems, and compared three typical pipelines of inferring Granger causality, as established in the literature. Specifically, we compared the performance of the spectral and information-theoretic Granger pipelines as well as standard Granger causality in their relations to the observed phase differences for frequencies at which the signals become synchronized to each other. We found that an information-theoretic approach, which takes into account different time lags between the past of one signal and the future of another signal, was the most robust to phase effects.