Detection of copy number variants reveals association of cilia genes with neural tube defects

PLoS One. 2013;8(1):e54492. doi: 10.1371/journal.pone.0054492. Epub 2013 Jan 17.

Abstract

Background: Neural tube defects (NTDs) are one of the most common birth defects caused by a combination of genetic and environmental factors. Currently, little is known about the genetic basis of NTDs although up to 70% of human NTDs were reported to be attributed to genetic factors. Here we performed genome-wide copy number variants (CNVs) detection in a cohort of Chinese NTD patients in order to exam the potential role of CNVs in the pathogenesis of NTDs.

Methods: The genomic DNA from eighty-five NTD cases and seventy-five matched normal controls were subjected for whole genome CNVs analysis. Non-DGV (the Database of Genomic Variants) CNVs from each group were further analyzed for their associations with NTDs. Gene content in non-DGV CNVs as well as participating pathways were examined.

Results: Fifty-five and twenty-six non-DGV CNVs were detected in cases and controls respectively. Among them, forty and nineteen CNVs involve genes (genic CNV). Significantly more non-DGV CNVs and non-DGV genic CNVs were detected in NTD patients than in control (41.2% vs. 25.3%, p<0.05 and 37.6% vs. 20%, p<0.05). Non-DGV genic CNVs are associated with a 2.65-fold increased risk for NTDs (95% CI: 1.24-5.87). Interestingly, there are 41 cilia genes involved in non-DGV CNVs from NTD patients which is significantly enriched in cases compared with that in controls (24.7% vs. 9.3%, p<0.05), corresponding with a 3.19-fold increased risk for NTDs (95% CI: 1.27-8.01). Pathway analyses further suggested that two ciliogenesis pathways, tight junction and protein kinase A signaling, are top canonical pathways implicated in NTD-specific CNVs, and these two novel pathways interact with known NTD pathways.

Conclusions: Evidence from the genome-wide CNV study suggests that genic CNVs, particularly ciliogenic CNVs are associated with NTDs and two ciliogenesis pathways, tight junction and protein kinase A signaling, are potential pathways involved in NTD pathogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Asian People
  • Cilia / genetics*
  • Cilia / physiology
  • DNA Copy Number Variations / genetics*
  • Female
  • Genetic Association Studies*
  • Genome, Human
  • Genotype
  • Humans
  • Male
  • Neural Tube Defects / genetics*
  • Neural Tube Defects / pathology
  • Pregnancy

Grants and funding

This work was jointly supported by the Ministry of Science and Technology of P. R. China, the National "973" Program on Population and Health (2013CB945404 to TZ; 2010CB529601 to BLW), the National Nature Science Fund (81100841 to XLC), the Beijing Excellent Scientist Fund (20061A0303200108 to XLC), Chinese Returned Oversea Scientist Fund to XLC by Beijing Science and Technology, and the Shanghai Science Fund (09JC1402400 and 09ZR1404500 to BLW). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.