Background: An elevated red cell distribution width (RDW) and iron deficiency (ID) at baseline predict enhanced mortality in chronic heart failure (CHF), but little is known about the prognostic implications of their temporal trends. We sought to determine the survival implications of temporal changes in RDW and evolving ID in patients with CHF.
Methods: The relation between red cell indices on first consultation and over time with mortality in 274 stable patients with systolic CHF was analysed. The combination of a rising RDW with a falling mean cell volume (MCV) over time defined evolving ID.
Results: Over a median 12 month period, 51% and 23% of patients had a rise in RDW and evolving ID, respectively. After a median follow-up of 27 months, 60 (22%) patients died. A rising RDW predicted enhanced all-cause mortality (unadjusted HR for 1% per week rise 9.27, 95% CI 3.58 to 24.00, P<0.0001) independently and incrementally to baseline RDW, with an absolute increase >0.02% per week optimally predictive. Evolving ID also related to higher rates of mortality (HR 2.78, 95% CI 1.64 to 4.73, P<0.001) and was prognostically worse than a rising RDW alone (P<0.005). Patients with evolving ID who maintained their Hb levels over time had a 2-fold greater risk of death than those whose Hb levels declined without evolving ID.
Conclusions: An expanding RDW and evolving iron deficiency over time predict an amplified risk of death in CHF and should be utilised for risk stratification and/or therapeutically targeted to potentially improve outcomes.
Keywords: Heart failure; Iron; RDW.
Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.