Glycolytic oscillations in yeast have been extensively studied. It is still unclear, if these oscillations are caused by the allosteric enzyme phosphofructokinase or the stoichiometry of glycolysis which contains an autocatalysis with respect to ATP. Bacterial glycolysis shows a different stoichiometry, however, also containing a stoichiometric autocatalysis. For Escherichia coli, the regulation of the enzyme phosphofructokinase is also assumed to be a major reason for oscillations to occur. We investigated glycolytic oscillations in a quantitative kinetic model for Streptococcus pyogenes set-up on the basis of experimental data. We found oscillations within physiologically feasible parameter ranges. We investigated the origin of these oscillations and conclude that, again, both the stoichiometry of the system, as well as its allosterically regulated enzymes can give rise to these oscillations. For the analysis we employed established and new optimization methods for finding oscillatory regimes and present these in the context of this study.
Copyright © 2013 Elsevier B.V. All rights reserved.