Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study

PLoS One. 2013;8(1):e54546. doi: 10.1371/journal.pone.0054546. Epub 2013 Jan 24.

Abstract

Objective: To assess the distribution of autonomic nervous system (ANS) dysfunction in overweight and obese children.

Methods: Parasympathetic and sympathetic ANS function was assessed in children and adolescents with no evidence of impaired glucose metabolism by analysis of heart rate variability (low frequency power ln(LF), high frequency power, ln(HF); ln(LF/HF) ratio, ratio of longest RR interval during expiration to shortest interval during inspiration (E/I ratio), root mean square of successive differences (RMSSD); sympathetic skin response (SSR); and quantitative pupillography (pupil diameter in darkness, light reflex amplitude, latency, constriction velocity, re-dilation velocity). The relationship of each ANS variable to the standard deviation score of body mass index (BMI-SDS) was assessed in a linear model considering age, gender and pubertal stage as co-variates and employing an F-statistic to compare the fit of nested models. Group comparisons between normal weight and obese children as well as an analysis of dependence on insulin resistance (as indexed by the Homeostasis Model Assessment of Insulin Resistance, HOMA-IR) were performed for parameters shown to correlate with BMI-SDS. Statistical significance was set at 5%.

Results: Measurements were performed in 149 individuals (mean age 12.0 y; 90 obese 45 boys; 59 normal weight, 34 boys). E/I ratio (p = 0.003), ln(HF) (p = 0.03), pupil diameter in darkness (p = 0.01) were negatively correlated with BMI-SDS, whereas ln(LF/HF) was positively correlated (p = 0.05). Early re-dilation velocity was in trend negatively correlated to BMI-SDS (p = 0.08). None of the parameters that depended significantly on BMI-SDS was found to be significantly correlated with HOMA-IR.

Conclusion: These findings demonstrate extended ANS dysfunction in obese children and adolescents, affecting several organ systems. Both parasympathetic activity and sympathetic activity are reduced. The conspicuous pattern of ANS dysfunction raises the possibility that obesity may give rise to dysfunction of the peripheral autonomic nerves resembling that observed in normal-weight diabetic children and adolescents.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Autonomic Nervous System / physiopathology*
  • Body Mass Index
  • Child
  • Cross-Sectional Studies
  • Female
  • Heart Rate
  • Humans
  • Male
  • Obesity / physiopathology*

Grants and funding

This work was supported by a grant from the German Diabetes Association (to SB and PB), by the Federal Ministry of Education and Research, Germany (Integrated Research and Treatment Center IFB “Adiposity Diseases”, FKZ: 01E01001; to SB, DP, WK), the Saxonian Ministry of Social Affairs, Germany (to SB), the Roland-Ernst-Stiftung für Gesundheitsforschung, Germany (to SB) and the 'Nationales Aktionsforum Diabetes Mellitus' (to SB and WK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.