While significant strides have been made in designing brain-machine interfaces for use in humans, efforts to decode truly dexterous movements in real time have been hindered by difficulty extracting detailed movement-related information from the most practical human neural interface, the electrocorticogram (ECoG). We explore a potentially rich, largely untapped source of movement-related information in the form of cortical connectivity computed with time-varying dynamic Bayesian networks (TV-DBN). We discover that measures of connectivity between ECoG electrodes derived from the local motor potential vary with dexterous movement in 65% of movement-related electrode pairs tested, and measures of connectivity derived from spectral features vary with dexterous movement in 76%. Due to the large number of features generated with connectivity methods, the TV-DBN a promising tool for dexterous decoding.